Mathematical Knowledge Graph-Driven Framework for Equation-Based Predictive and Reliable Additive Manufacturing
arXiv:2601.05298v1 Announce Type: new
Abstract: Additive manufacturing (AM) relies critically on understanding and extrapolating process-property relationships; however, existing data-driven approaches remain limited by fragmented knowledge representations and unreliable extrapolation under sparse ...
Effects of personality steering on cooperative behavior in Large Language Model agents
arXiv:2601.05302v1 Announce Type: new
Abstract: Large language models (LLMs) are increasingly used as autonomous agents in strategic and social interactions. Although recent studies suggest that assigning personality traits to LLMs can influence their behavior, how personality steering affects coop...
The Persona Paradox: Medical Personas as Behavioral Priors in Clinical Language Models
arXiv:2601.05376v1 Announce Type: new
Abstract: Persona conditioning can be viewed as a behavioral prior for large language models (LLMs) and is often assumed to confer expertise and improve safety in a monotonic manner. However, its effects on high-stakes clinical decision-making remain poorly cha...
Safety-Utility Conflicts Are Not Global: Surgical Alignment via Head-Level Diagnosis
arXiv:2601.04262v1 Announce Type: new
Abstract: Safety alignment in Large Language Models (LLMs) inherently presents a multi-objective optimization conflict, often accompanied by an unintended degradation of general capabilities. Existing mitigation strategies typically rely on global gradient geom...
Learning to Reason: Temporal Saliency Distillation for Interpretable Knowledge Transfer
arXiv:2601.04263v1 Announce Type: new
Abstract: Knowledge distillation has proven effective for model compression by transferring knowledge from a larger network called the teacher to a smaller network called the student. Current knowledge distillation in time series is predominantly based on logit...
The Forgotten Shield: Safety Grafting in Parameter-Space for Medical MLLMs
arXiv:2601.04199v1 Announce Type: new
Abstract: Medical Multimodal Large Language Models (Medical MLLMs) have achieved remarkable progress in specialized medical tasks; however, research into their safety has lagged, posing potential risks for real-world deployment. In this paper, we first establis...
MemKD: Memory-Discrepancy Knowledge Distillation for Efficient Time Series Classification
arXiv:2601.04264v1 Announce Type: new
Abstract: Deep learning models, particularly recurrent neural networks and their variants, such as long short-term memory, have significantly advanced time series data analysis. These models capture complex, sequential patterns in time series, enabling real-tim...
Green MLOps: Closed-Loop, Energy-Aware Inference with NVIDIA Triton, FastAPI, and Bio-Inspired Thresholding
arXiv:2601.04250v1 Announce Type: new
Abstract: Energy efficiency is a first-order concern in AI deployment, as long-running inference can exceed training in cumulative carbon impact. We propose a bio-inspired framework that maps protein-folding energy basins to inference cost landscapes and contro...
SAGE-32B: Agentic Reasoning via Iterative Distillation
arXiv:2601.04237v1 Announce Type: new
Abstract: We demonstrate SAGE-32B, a 32 billion parameter language model that focuses on agentic reasoning and long range planning tasks. Unlike chat models that aim for general conversation fluency, SAGE-32B is designed to operate in an agentic loop, emphasizi...
arXiv:2601.04239v1 Announce Type: new
Abstract: The Cyclic Antibandwidth Problem (CABP), a variant of the Antibandwidth Problem, is an NP-hard graph labeling problem with numerous applications. Despite significant research efforts, existing state-of-the-art approaches for CABP are exclusively heuri...
Formal Analysis of AGI Decision-Theoretic Models and the Confrontation Question
arXiv:2601.04234v1 Announce Type: new
Abstract: Artificial General Intelligence (AGI) may face a confrontation question: under what conditions would a rationally self-interested AGI choose to seize power or eliminate human control (a confrontation) rather than remain cooperative? We formalize this ...
Actively Obtaining Environmental Feedback for Autonomous Action Evaluation Without Predefined Measurements
arXiv:2601.04235v1 Announce Type: new
Abstract: Obtaining reliable feedback from the environment is a fundamental capability for intelligent agents to evaluate the correctness of their actions and to accumulate reusable knowledge. However, most existing approaches rely on predefined measurements or...
Lightweight Transformer Architectures for Edge Devices in Real-Time Applications
arXiv:2601.03290v1 Announce Type: new
Abstract: The deployment of transformer-based models on resource-constrained edge devices represents a critical challenge in enabling real-time artificial intelligence applications. This comprehensive survey examines lightweight transformer architectures specif...
Ratio-Variance Regularized Policy Optimization for Efficient LLM Fine-tuning
arXiv:2601.03320v1 Announce Type: new
Abstract: On-policy reinforcement learning (RL), particularly Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO), has become the dominant paradigm for fine-tuning large language models (LLMs). While policy ratio clipping stabilizes...
Mastering the Game of Go with Self-play Experience Replay
arXiv:2601.03306v1 Announce Type: new
Abstract: The game of Go has long served as a benchmark for artificial intelligence, demanding sophisticated strategic reasoning and long-term planning. Previous approaches such as AlphaGo and its successors, have predominantly relied on model-based Monte-Carlo...
Toward Maturity-Based Certification of Embodied AI: Quantifying Trustworthiness Through Measurement Mechanisms
arXiv:2601.03470v2 Announce Type: new
Abstract: We propose a maturity-based framework for certifying embodied AI systems through explicit measurement mechanisms. We argue that certifiable embodied AI requires structured assessment frameworks, quantitative scoring mechanisms, and methods for navigat...
Digital Red Queen: Adversarial Program Evolution in Core War with LLMs
arXiv:2601.03335v1 Announce Type: new
Abstract: Large language models (LLMs) are increasingly being used to evolve solutions to problems in many domains, in a process inspired by biological evolution. However, unlike biological evolution, most LLM-evolution frameworks are formulated as static optim...
Exploration Through Introspection: A Self-Aware Reward Model
arXiv:2601.03389v1 Announce Type: new
Abstract: Understanding how artificial agents model internal mental states is central to advancing Theory of Mind in AI. Evidence points to a unified system for self- and other-awareness. We explore this self-awareness by having reinforcement learning agents in...
Enhancing LLM Instruction Following: An Evaluation-Driven Multi-Agentic Workflow for Prompt Instructions Optimization
arXiv:2601.03359v1 Announce Type: new
Abstract: Large Language Models (LLMs) often generate substantively relevant content but fail to adhere to formal constraints, leading to outputs that are conceptually correct but procedurally flawed. Traditional prompt refinement approaches focus on rephrasing...
Polynomial Convergence of Riemannian Diffusion Models
arXiv:2601.02499v1 Announce Type: new
Abstract: Diffusion models have demonstrated remarkable empirical success in the recent years and are considered one of the state-of-the-art generative models in modern AI. These models consist of a forward process, which gradually diffuses the data distributio...
arXiv:2601.02433v1 Announce Type: new
Abstract: Digital AI systems spanning large language models, vision models, and generative architectures that operate primarily in symbolic, linguistic, or pixel domains. They have achieved striking progress, but almost all of this progress lives in virtual spa...
WebGym: Scaling Training Environments for Visual Web Agents with Realistic Tasks
arXiv:2601.02439v1 Announce Type: new
Abstract: We present WebGym, the largest-to-date open-source environment for training realistic visual web agents. Real websites are non-stationary and diverse, making artificial or small-scale task sets insufficient for robust policy learning. WebGym contains ...
GEM-Style Constraints for PEFT with Dual Gradient Projection in LoRA
arXiv:2601.02500v1 Announce Type: new
Abstract: Full fine-tuning of Large Language Models (LLMs) is computationally costly, motivating Continual Learning (CL) approaches that utilize parameter-efficient adapters. We revisit Gradient Episodic Memory (GEM) within the Low-Rank Adapter (LoRA) subspace ...
Orchestral AI: A Framework for Agent Orchestration
arXiv:2601.02577v1 Announce Type: new
Abstract: The rapid proliferation of LLM agent frameworks has forced developers to choose between vendor lock-in through provider-specific SDKs and complex multi-package ecosystems that obscure control flow and hinder reproducibility. Integrating tool calling a...